The 3-rainbow index of graph operations

نویسندگان

  • TINGTING LIU
  • YUMEI HU
چکیده

A tree T , in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the same color. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k vertices of G, there exists a rainbow tree T in G such that S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G). Graph operations, both binary and unary, are an interesting subject, which can be used to understand structures of graphs. In this paper, we will study the 3-rainbow index with respect to three important graph product operations (namely Cartesian product, strong product, lexicographic product) and other graph operations. Firstly, let Gi(i = 1, 2, · · · , k) be connected graphs and G∗ be the Cartesian product of Gi. That is to say, G∗ = G1 G2 · · · Gk (k ≥ 2). Then we proved that rx3(G ∗) ≤ ∑k i=1 rx3(Gi). And we also get the condition when the equality holds. As a corollary, we obtain an upper bound for the 3-rainbow index of strong product graph. Secondly, we discuss the 3-rainbow index of the lexicographic graph G[H] for connected graphs G and H . And the sharp upper bound is given. Finally, we consider some other simple graph operations : the join of two graphs, split a vertex of a graph and subdivide an edge of a graph. The upper bounds of the 3-rainbow index of the three operation graphs are presented, respectively. Key–Words: 3-rainbow index; Cartesian product; strong product; lexicographic product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Computing GA4 Index of Some Graph Operations

The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v     , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G   u v    , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...

متن کامل

Reformulated F-index of graph operations

The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...

متن کامل

The Hyper-Zagreb Index of Graph Operations

Let G be a simple connected graph. The first and second Zagreb indices have been introduced as  vV(G) (v)2 M1(G) degG and M2(G)  uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G)     (degG(u)  degG In this paper, the HyperZagreb index of the Cartesian p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014